"Space the final fronter"

Christopher R. Hertel

November, 2007

INTRODUCTION

Who am !?

- *Network Geek
- **★Storage Geek**
- **★Samba/CIFS** Geek
- *Author (shameless plug)
- **★ Incurable Idealist**

INTRODUCTION

Who are You?

- Students
- System Administrators
- Network Managers
- Security Geeks
- Coders
- Hackers (per RFC 1392)
- The Morbidly Curious

INTRODUCTION

Where are we going?

A Tour of Storage Technologies:

- Lambda Disk 51 Years Young
- ► SAN Shared Block Storage
- ► NAS Networked File Systems
- **Other Things You Will Encounter in your Travels.**

(That's really what disk drives are all about.)

Sidebar

Disk-o-matic Math

Drive makers measure by 1000, not 1024.

1PB = 1000TB = 909.5 "real" TB

1TB = 1000GB = 931.3 "real" GB

1GB = 1000MB = 953.7 "real" MB

1MB = 1000KB = 976.5 "real" KB

1KB = 1000B

Operating Systems typically use powers of 2 (e.g., $2^{10} = 1024$). One "real" Petabyte = 2^{50} bytes.

IBM RAMAC (1956)

Random Access Method of Accounting and Control

Original Disk Drive:

- Fifty 24" Platters
- Less Than Five Megabytes (4.4MB)

25 YEARS AGO: 10MB WAS A LOT OF DISK SPACE.

Today: I've got at least 1TI3 at home.

- **2.5"** Drives are \$0.20/GB
- Enterprise Storage is measured in Petabytes
- We carry Gigabytes in our pockets

Storage capacity, like computing power, has grown such that we can now hold in our hands what used to require a computer room and a team of experts.

In our increasingly digital world:

- We keep getting more Digital Stuff (data)
- Our Digital Stuff keeps getting bigger (Gigs)
- We worry about keeping our Digital Stuff safe
- We have trouble keeping track of Digital Stuff

All of that storage...

...scattered all over the home

...scattered all around the office

...scattered all across the Internet

How do we handle it all?

The problems that the lunation finge is working on today are the problems that the main— stream storage industry will face in 5-10 years."

(He's right, you know.)

Storage on the Lunatic Fringe

http://www.dtc.umn.edu/resources/ruwart.ppt

Hertel's Corollary: The large-scale storage problems of yesterday afternoon have already become the home office / small office storage problems of early this morning.

What's good for the goose...

Benefits of consolidated storage for small-end users:

- Centralized management
- Efficient use of resources
- Data protection (RAID / Backup / Archive)
- Failure isolation

There are problems with centralization, so a mix of local and central storage is often the most workable choice.

Familiar NGS Systems:

- ►Novell's NetWare ^{Fading...}
- ► Apple's Appleshare ♣
- Sun's NFS *****Sun's NFS
- ►IETF WebDAV 👾

Typical client/server NAS

- ★Large server with local disk
- ★ Multiple clients
- ★Shared access to files & directories

NGS Concerns:

DOS FAT	MacOS	Windows NTFS	Linux/Unix
 System, Hidden, and Archive bits No UID/GID 8.3 Format EOLN: <cr><lf></lf></cr> 	 Data and Resource Forks EOLN: <cr></cr> 	Extended AttributesFile StreamsNT ACLsEOLN: <cr><lf></lf></cr>	 User, Group, World permission bits UID/GID POSIX ACLs EOLN: <lf></lf>

NAS File Systems are "Vendor Biased".

Case In Point CIFS vs. NFS

- Traditionally server-to-server
- Traditionally geek-to-geek
- Simple authentication model

For a user, CIFS is easy:

- ★ Traditionally user-to-server or peer-to-peer
- Non-technical user community
- Specifications & protocol details are hidden

WebDGV

An extension of HTTP

Makes the web "read/write"

Adds only seven new commands

Messages passed in XML format

The use of XML allows great flexibility ... and complexity.

"...as simple as possible, but no simpler."

This is a picture of my cat.

SAN Overview

Precursor: Direct Attached Disk Arrays

Expandable

FibreChannel SANs

- SCSI over Shared/Switched Fiber
- Longer Distances
- 1, 2, 4, and soon 8 Gbps Speeds
- Redundancy

iSCSI SANs

- Leverage the IP Network
- Coexist with FibreChannel
- Run on
 Commodity
 Network
 Hardware

SCSI is the Traditional SAN "Protocol"

- FibreChannel carries SCSI PDUs
- iSCSI is just SCSI PDUs over TCP/IP

The message is the same; only the transport changes.

Rivals

- Network Block Dæmon (nbd) for Linux uses TCP/IP as a transport
- AoE (ATA over Ethernet) transports ATA commands over Ethernet frames
- FCoE (Fibre Channel over Ethernet)

SAN

- Block Storage
- One-to-One Relationship
- Data-center Oriented
- Space is Not Shared

NAS

- File System Storage
- One-to-Many Relationship
- End-User Oriented
- Data Can Be Shared

MAID: Massive Appay of Idle Disks

- Cheap Disks (Commodity ATA)
- Densely Packed
- Mostly Powered Down
- Presented as (virtual) Tape Libraries

Idle drives are spun up from time to time to ensure that they don't get stuck.

ULM: Information Lifegyele Management

- Identify different storage classes
 - high speed vs. low speed
 - high availability vs. high latency
 - expensive vs. cheap
- Monitor data access
- Migrate data (manually/automatically)

For example, migrate from RAID1+0 SCSI drives to RAID5 ATA to Tape.

Linux: Your Giorage Playpen

- *****Home SAN:
 - ► ATAoE and iSCSI
- **FUSE: User Mode File System Interface
 - E.g.: SSH, FTP, and BitTorrent clients
- **Logical Volume Manager (LVM)
- *****Software RAID

Unusual Deyond fibe Firange

- * Cluster File Systems
 - E.g.: Global File System (GFS)
- Distributed File Systems
 - E.g.: Google File System (GFS)
- * Object File Systems
 - E.g.: Lustre and UofM T-10 OSD

The End

Slides available at: http://ubiqx.org/presentations/

Next Semester!

- I will be teaching INet 4032
- 2 Credits
- 1/2 Semester (starts March, 2008)
- No Dancing in the Aisles

